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Abstract

We construct an exact finite difference scheme for a second-order, linear equation that forms the basis for
modeling and analyzing linear damped vibratory systems with forcing.
r 2005 Elsevier Ltd. All rights reserved.
Second-order, linear ordinary differential equations arise as important mathematical models for
a broad range of phenomena in vibration, acoustics, and seismology [1–4]. These equations, for
the case of a single dependent variable, take the form

d2x

dt2
þ aðtÞ

dx

dt
þ bðtÞx ¼ f ðtÞ, (1)

where the coefficients, aðtÞ and bðtÞ, may be functions of the time t, and f ðtÞ is a forcing function.
For this type of problem, the initial conditions are usually given, i.e.,

xð0Þ ¼ A;
dxð0Þ

dt
¼ B, (2)
see front matter r 2005 Elsevier Ltd. All rights reserved.
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where A and B have specified values. A more general form occurs in the consideration of singular
boundary value problems. The equation now takes the form

��y00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ, (3a)

yð0Þ ¼ a1; yð1Þ ¼ a2, (3b)

where now x is a space coordinate, � is a small parameter, i.e., j�j51, the prime denotes taking the
derivative with respect to x, i.e., y0ðxÞ ¼ dyðxÞ=dx; the x interval in ½0; 1	; and ða1; a2Þ are constants.

For many applications, the data to be modeled and/or analyzed appear either in digital form
and/or the system of interest has a non-elementary forcing function such that a discrete numerical
integration method is needed to study the behavior of the system [6,7]. The main purpose of this
short communication is to construct an exact finite difference scheme [8] for the homogeneous
case where the coefficients are constant and then show how this result can be applied to construct
discretizations of the full inhomogeneous case. The analysis begins by considering the following
particular form of Eq. (3a):

cy00ðxÞ þ ay0ðxÞ þ by ¼ 0, (4)

where ða; b; cÞ are constants. Previous work by Mickens [7] builds on the results obtained by Ly [6].
Independently, Mickens [8] has also constructed an exact finite difference scheme for the damped
harmonic oscillator written in the dimensionless form

d2yðx̄Þ

dx̄2
þ 2�

dyðx̄Þ

dx̄
þ yðx̄Þ ¼ 0. (5)

The answer provided by that calculation will be the starting point for constructing an exact finite
difference scheme for second-order, linear ordinary differential equations having constant
coefficients.

First, note that the transformation of variables

x̄ ¼

ffiffiffi
b

c

r
x; 2� ¼

1ffiffiffiffiffi
bc

p , (6)

in Eq. (5), gives

c
d2yðxÞ

dx2
þ a

dyðxÞ

dx
þ byðxÞ ¼ 0. (7)

Second, the exact finite difference scheme for Eq. (5) is [8]

ykþ1 � 2yk þ yk�1

f2
þ 2�

yk � cyk�1

f

� �
þ

2ð1� cÞyk þ ðf2
þ c2

� 1Þyk�1

f2
¼ 0, (8)

where

x̄ ! x̄k ¼ h̄k; yðx̄Þ ! yk; k ¼ integer; (9)

h̄ is the step-size, i.e., h̄ ¼ Dx̄; and the functions c and f are

cð�; h̄Þ ¼
�e��h̄ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p þ e��h̄ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� h̄

� �
, (10)
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fð�; h̄Þ ¼
e��h̄ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� h̄

� �
. (11)

In terms of ða; b; cÞ, it follows that

�2 ¼
a2

4bc
; �h̄ ¼

ah

2c
, (12)

where, see Eq. (6),

x ! xk ¼ hk; h̄ ¼

ffiffiffi
b

c

r
h. (13)

Now define c1ða; b; c; hÞ and f1ða; b; c; hÞ as

c1ða; b; c; hÞ 
 cð�; h̄Þ ¼ c
a2

4bc
;

ffiffiffi
b

c

r
h

 !
, (14a)

f1ða; b; c; hÞ 
 fð�; h̄Þ ¼ c
a2

4bc
;

ffiffiffi
b

c

r
h

 !
. (14b)

With these definitions, Eq. (8) can be rewritten, after some algebraic manipulations, to the form

c
ykþ1 � 2yk þ yk�1

D1

	 

þ a

yk � c1yk�1

D2

	 

þ b

2ð1� c1Þyk þ ðf2
1 þ c2

1 � 1Þyk�1

D3

	 

¼ 0, (15)

where

D1 ¼ D1ða; b; c; hÞ ¼
c

b

� �
½f1ða; b; c; hÞ	

2, (16a)

D2 ¼ D2ða; b; c; hÞ ¼

ffiffiffi
c

b

r
f1ða; b; c; hÞ, (16b)

D3 ¼ D3ða; b; c; hÞ ¼ f1ða; b; c; hÞ. (16c)

This is the exact finite scheme for the second-order, linear, constant coefficient differential
equation

cy00ðxÞ þ ay0ðxÞ þ byðxÞ ¼ 0. (17)

An examination of the non-standard scheme [8], as represented in Eq. (15), gives the following
features:

(i) A discrete second-order derivative, as given by standard methods [9], has the representation

y00ðxÞ !
ykþ1 � 2yk þ yk�1

h2
. (18)

Note, however, that the result in Eq. (15) has the step-size h replaced by the more complex
expression D1ða; b; c; hÞ which not only has the property

D1ða; b; c; hÞ ¼ h2
þ Oðh4

Þ, (19)

but, for finite h, depends also on the parameters (a,b,c).
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(ii) The discrete first-derivative, for Eq. (17), is a backward-Euler type representation with the
step-size in the denominator replaced by D2ða; b; c; hÞ with

D2ða; b; c; hÞ ¼ h þ Oðh2
Þ. (20)

(iii) The discrete representation for the y term is modeled by a linear combination of yk and
yk�1. A direct calculation shows that

Lim
h!0

2ð1� c1Þyk þ ðf2
1 þ c2

1 � 1Þyk�1

D3

	 

¼ y. (21)

(iv) With careful attention to taking the proper limits, it is easy to show that non-standard
schemes for the differential equations

cy00 þ ay0 ¼ 0, (22a)

cy00 þ by ¼ 0, (22b)

ay0 þ by ¼ 0 (22c)

are obtained by considering, respectively, the limits as b ! 0, a ! 0, and c ! 0.
For the case where the coefficients depend on x, i.e.,

cðxÞy00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ 0, (23)

a non-standard finite difference scheme will incorporate the features of Eq. (15) along with
selecting a method for the discretization of aðxÞ, bðxÞ, and cðxÞ. One possibility is to make the
following replacements in Eq. (15):

cðxÞ !
ckþ1 þ 2ck þ ck�1

4
, (24a)

aðxÞ !
ak þ c1ak�1

1þ c1

, (24b)

bðxÞ !
2ð1� c1Þbk þ ðf2

1 þ c2
1 � 1Þbk�1

2ð1� c1Þ þ ðf2
1 þ c2

1 � 1Þ
, (24c)

where ck 
 cðxkÞ, bk 
 bðxkÞ, ak ¼ aðxkÞ, and replace ðD1;D2;D3Þ by the expressions, see Eqs. (16),

D1 ! D1ðak; bk; ck; hÞ, (25a)

D2 ! D2ðak; bk; ck; hÞ, (25b)

D3 ! D3ðak; bk; ck; hÞ. (25c)

Similarly, the inhomogeneous differential equation

cðxÞy00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ. (26)

A partial test of the above proposed numerical integration schemes was carried out by Patidar
[5] for several special test cases of singular perturbation problems, i.e., situations for which
cðxÞ ¼ �, where the parameter � can be very small. The properly selected non-standard schemes



ARTICLE IN PRESS

R.E. Mickens et al. / Journal of Sound and Vibration 287 (2005) 1052–10561056
gave extremely accurate solutions and, in general, provided better numerical solutions in
comparison with several standard discretizations.

In summary, an exact finite difference model was constructed for second-order, linear,
homogeneous differential equations where the coefficients are constant. Using this form, a
discretization for the case where the coefficients depended on x was proposed, along with a
possible non-standard extension for the inhomogeneous equation. These schemes may provide
improved numerical solutions to certain problems arising in several areas of acoustics, vibrations
and seismology.
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